Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592783

RESUMO

This study aimed to determine the effects of the nitrogen (N) application period and level on the fate of fertilizer N and the contribution of N absorption and translocation to apple organ N. Two N application periods (labeled by the 15N tracer technique in spring and summer, represented by SP and SU, respectively) and three N levels (N0, MN, and HN) were used to determine the physiological indexes and aboveground, root, and soil 15N content of 4-year-old dwarf ('Red Fuji'/M9T337) and arborized ('Red Fuji'/Malus hupehensis Rehd.) apple trees. The results showed that HN led to shoot overgrowth, which was not conducive to the growth of the apple root system (root length, root tips, root surface area, and root volume) or the improvement of root activity. The contribution of soil N to apple organ N accounted for more than 50%, and the contribution of N application in summer to fruit N was higher than that in spring. Under HN treatment, the proportion of soil N absorbed by trees decreased, while that of fertilizer N increased; however, the highest proportion was still less than 50%, so apple trees were highly dependent on soil N. Under MN treatment, fertilizer N residue was similar to soil N consumption, and soil N fertility maintained a basic balance. Under HN treatment, fertilizer N residue was significantly higher than soil N consumption, indicating that excessive N application increased fertilizer N residue in the soil. Overall, the 15N utilization rate of arborized trees (17.33-22.38%) was higher than that of dwarf trees (12.89-16.91%). A total of 12.89-22.38% of fertilizer 15N was absorbed by trees, 30.37-35.41% of fertilizer 15N remained in the soil, and 44.65-54.46% of fertilizer 15N was lost. The 15N utilization rate and 15N residual rate of summer N application were higher than those of spring N application, and the 15N loss rate was lower than that of spring N application. High microbial biomass N (MBN) may be one of the reasons for the high N utilization rate and the low loss rate of N application in summer.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37018294

RESUMO

Tinnitus is an auditory phantom percept that affects the perception of sound in the patient's ears, and the incidence of prolonged tinnitus is as high as ten to fifteen percent. Acupuncture is a unique treatment method in Chinese medicine, and it has great advantages in the treatment of tinnitus. However, tinnitus is a subjective symptom of patients, and there is currently no objective detection method to reflect the improvement effect of acupuncture on tinnitus. We used functional near-infrared spectroscopy (fNIRS) to explore the effect of acupuncture on the cerebral cortex of tinnitus patients. We collected the scores of the tinnitus disorder inventory (THI), tinnitus evaluation questionnaire (TEQ), hamilton anxiety scale (HAMA), and hamilton depression scale (HAMD) of eighteen subjects before and after acupuncture treatment, and the fNIRS signals of these subjects in sound-evoked activity before and after acupuncture treatment. According to the fNIRS detection results of tinnitus patients, acupuncture increased the concentration of oxygenated hemoglobin in the temporal lobe of tinnitus patients, and affected the activation of the auditory cortex. The study may reflect the neural mechanisms of acupuncture treatment for tinnitus and ultimately help to provide an objective evaluation method for the therapeutic effect of acupuncture treatment for tinnitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA